New Roles of Glycosaminoglycans in α-Synuclein Aggregation in a Cellular Model of Parkinson Disease

نویسندگان

  • Sonia Lehri-Boufala
  • Mohand-Ouidir Ouidja
  • Véronique Barbier-Chassefière
  • Emilie Hénault
  • Rita Raisman-Vozari
  • Laure Garrigue-Antar
  • Dulce Papy-Garcia
  • Christophe Morin
چکیده

The causes of Parkinson disease (PD) remain mysterious, although some evidence supports mitochondrial dysfunctions and α-synuclein accumulation in Lewy bodies as major events. The abnormal accumulation of α-synuclein has been associated with a deficiency in the ubiquitin-proteasome system and the autophagy-lysosomal pathway. Cathepsin D (cathD), the major lysosomal protease responsible of α-synuclein degradation was described to be up-regulated in PD model. As glycosaminoglycans (GAGs) regulate cathD activity, and have been recently suggested to participate in PD physiopathology, we investigated their role in α-synuclein accumulation by their intracellular regulation of cathD activity. In a classical neuroblastoma cell model of PD induced by MPP+, the genetic expression of GAGs-biosynthetic enzymes was modified, leading to an increase of GAGs amounts whereas intracellular level of α-synuclein increased. The absence of sulfated GAGs increased intracellular cathD activity and limited α-synuclein accumulation. GAGs effects on cathD further suggested that specific sequences or sulfation patterns could be responsible for this regulation. The present study identifies, for the first time, GAGs as new regulators of the lysosome degradation pathway, regulating cathD activity and affecting two main biological processes, α-synuclein aggregation and apoptosis. Finally, this opens new insights into intracellular GAGs functions and new fields of investigation for glycobiological approaches in PD and neurobiology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease

Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...

متن کامل

Clioquinol-induced ordered conformational behavior in alpha-synuclein: promising relevance for therapeutic approach to Parkinson's disease

Parkinson?¦s disease (PD) is a devastating and an intricate complex neurological disorder that results from the progressive degeneration of nerve cells in Substantia nigra that controls movement. The pathological hallmark of PD is the formation of insoluble protein aggregates known as lewey bodies. Alpha-synuclein is the major constituent of these fibrillar structures. Alpha-synuclein a 140 ami...

متن کامل

Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease.

Parkinson's disease (PD) is a complex, chronic and progressive neurodegenerative disease. While the etiology of PD is likely multifactorial, the protein α-synuclein is a central component to the pathogenesis of the disease. However, the mechanism by which α-synuclein causes toxicity and contributes to neuronal death remains unclear. Mitochondrial dysfunction is also widely considered to play a ...

متن کامل

What’s to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease?

α-Synuclein is a key protein in Parkinson disease. Not only is it the major protein component of Lewy bodies, but it is implicated in several cellular processes that are disrupted in Parkinson disease. Misfolded α-synuclein has also been shown to spread from cell-to-cell and, in a prion-like fashion, trigger aggregation of α-synuclein in the recipient cell. In this mini-review we explore the ev...

متن کامل

Sumoylation inhibits α-synuclein aggregation and toxicity

Posttranslational modification of proteins by attachment of small ubiquitin-related modifier (SUMO) contributes to numerous cellular phenomena. Sumoylation sometimes creates and abolishes binding interfaces, but increasing evidence points to another role for sumoylation in promoting the solubility of aggregation-prone proteins. Using purified α-synuclein, an aggregation-prone protein implicated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015